- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Balfoort, Linda (1)
-
Dunbar, Gavin (1)
-
Holschuh, Nicholas (1)
-
Horgan, Huw J (1)
-
Hulbe, Christina (1)
-
Hurwitz, Benjamin (1)
-
Jendersie, Stefan (1)
-
Johnson, Katelyn (1)
-
Lawrence, Justin (1)
-
Levy, Richard (1)
-
Mandeno, Darcy (1)
-
Marschalek, James (1)
-
Morgenstern, Regine (1)
-
Mullen, Andrew D (1)
-
Quartini, Enrica (1)
-
Sauthoff, Wilson (1)
-
Schmidt, Britney E (1)
-
Siegfried, Matthew (1)
-
Stevens, Craig (1)
-
Stewart, Craig (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Beneath Antarctica’s ice sheets, a little-observed network of liquid water connects vast landscapes and contributes to the motion of the overriding ice. When this subglacial water reaches the ocean cavity beneath ice shelves, it mixes with seawater, amplifying melt and in places forming deep channels in the base of the ice. Here we present observations from a hot-water-drilled borehole documenting subglacial water entering the ocean cavity at the grounding zone of Kamb Ice Stream and the Ross Ice Shelf. Our observations show that melt has removed approximately a third of the ice thickness, yet measurements reveal low rates of subglacial discharge in a turbid plume. Sediment cored from the channel floor shows larger discharge events occur and episodically deposit material from distinct geological domains. We quantify subglacial discharge and link our observations to the catchment upstream. We conclude that discrete discharge events are likely to dominate channel melt and sediment transport and result in the extensive ice-shelf features downstream of Kamb Ice Stream.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
